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ABSTRACT
A method of obtaining exact solutions for the relativistic gas
mixtures at high effective temperatures, subjected to a body force or
no body force, is presented. The method yields the solution of the
conservation equation by linear superposition of the energy momentum
tensor of the electromagnetic field with or without electric charge
and current. The nature of the flow field of high temperature gas is

similar to that of the photon gas within the first two approximations.



I. TINTRODUCTION

There has been a recent interest in the fluid dynamics of relativistic
gas in the realm of astrophysics, particularly in those problems associated
with high temperature gas in a stellar interior.

Various fundamental aspects of the relativistic gas have been ex-

(1), Taub(z-s), Lichnerowicz(6), McVitte(7),

)

clusively treated by ange
C))

Guess , and most recently by Truitt Yet virtually no investigation
has been made in obtaining the exact solutions of the ogverning equations,
presumably because these equations are non linear. Undoubtedly obtaining
exact solutions is of practical importance in view of the inadequacy of
linearized theory prevailing at high velocity and high temperature.

It is the purpose of this paper to present the method of obtaining
a class of exact solutions applicable for (1) photon gas, (11) material
gas at high effective temperatures and (111) a mixture of the photon gas
and the material gas at high effective temperatures.

The governing equations and the notations adopted here follow closely

that of Synge(l).

The Greek affixes pvo ... takes the value 1,2,3,4,
and the Latin affixes ab take values 1,2,3. ¢ is the special relativity

speed of light.



ITI. DEDUCTION OF THE ASYMPTOTIC PERTURBATION EQUATION OF THE
RELATIVISTIC GAS

The equation of motion of the relativistic gases is the conservation

of the energy momentum tensor T v

OT =20 )
M VH
' 5] ! d )
L o =2 £
where SH stands for the operator TSt + =S +5
The energy tensor is given by
— -2 -2
T\)H (e+c “p) )Lv)\_u + ﬁv“c p )
¢ is the mean density of the gas or gas mixture, p is the hydrogtatic
pressure, )\ 1is a 4-velocity vector satisfying the following relation
L
Aa =-1 3)
Hop
The equations of continuity, and the equations of state of the
photon gas, the gas composed material particles of proper mass m, and
%
the gas mixture of the photon and the material particles are assumed
to be those given by Synge(l)
Photon gas d (NA) =0 (4a)
P P
e +c?p= 4N/ , c3p= N (4b)
Material gas o (NA» ) =0 (5a)
B
e +c?p=nmnNGE) , cZp = N/E (5b)
Gas mixture d (N )=0 , oMy )=0 (6a)
B B R )
¢ +c2p=nNGEE) +4N/E , c®p= (W+N)/E (6Db)

where ’ﬁ, and N are the number densities of the photon, and the material

particles respectively,

* It will be assumed that the photons and the material particles are
in dynamic and thermal equilibrium.
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E is the reciprocal temperature related with the absolute temper-
ature T as follows
kT = & /€ )
where k is the Baltzmann's constant. nf is a non-dimensional number,
and 1/mg is the effective temperature.

The function G(x) is defined in terms of Bessel functions

CE) =S = I TS ®)

For a gas composed of material particles at high effective temper-

. . . . 1 :
ature i.e. nf << 1, the equation of state is approx1mated( ) to be

e+c-2p=mNG(m§)f:%\l+n—Fél\E-+... (9a)
c-zp’=N/§,ef—éﬂ+1§E+... (9b)

Note that the left hand side of Eq. (9) reduced to that of the photon
gas when m vanishes.

The asymptotic behavior of the equation of state suggests the
plausibility of developing the asymptotic theory of the material gas
which approaches that of the photon éas in the limit of vanishing rest
mass.

To begin with, the reciprocal temperature is non-dimensionalized

by some reference reciprocal temperature gref

mg = (m§ ) = xC (10)

where # will be regarded as a small parameter in the ensuing perturbative
analysis.

All the fluid properties are expanded in terms of u



@, W, e @,
D@ W) e ),
= n© 4o ® +28® 4

F=%© 4,50 4,23 4

L@
T
¢=¢®

Substituting Egs.

also expanded in ascending powers of x

=1
DY

) @)

T T

2B = 4fy @@y Dy D) D @y @ (@ ) (£ @Y7+

and THV

(lla) to (11f) into (3), the energy tensor pr

(©) ¢y
Ty *T

()

+ g

+ u X

v

are given as

e @ 4@
n

W) 4 2, @ 4

+ KT(Z)

hy

29 < oy @) 1 OO g ()

by ©)

L) l{w (1)+x(1)'(“’ (°)+x(°)>€ W e (o):\)\go)x\fO) + 4(¢, (°)+X(°)>(>‘u )

W, @) (, (0, (), @), ©)
+6 [0 P (i @y @) W 7]

(11a)
(11b)
(11c)
(11d)
(11e)

(11£)

is

(12a)

(12b)

1), (o), (@), 1)

(12¢)

1 2
= m(o)g(o) }

VR 4 (5 Dy @)y @y @) @ 1 @), €0 Dy Dy (07

+ 4(w(°)+Xﬁ°)>(x£?)xé°)+xéf)x62)+xél)xél)>

+ 6MV{¢(2)+X(2)'(w(1)+*fl)>(c(1)/C(°)>'(W(°)+x‘°)>[g(2)/g(°)-(g(1)/g(°)>2]}

where

¢

@) _ 4on®

OR

X(n) - 4mN

~(n)
(o)

(12d)

(12¢)



The perturbative conservation equations are

(o) _
3, pr =0

1) .
9, Tw =0

2)
3, TW = 0

The continuity equations are

(8 ?) = 0 2, (¥ = 0
NCCAROMONS) A KR E5E, DY — o

o (N @y Oy D@ @) g 3 (FOR O FD DFERD - g

v

(n)

The four velocity wvectors X satisfy the following relations

NONONE.
("

L), @) _ g
T

X(O)X(Z) 2 (1) a) _
TR Mo M

The traces of T(o), T(l) and T(Z) are found to be
p,\) p,\) p,\)
SO
M

™ - o

u

AN OO
it

3]

(13a)

(13b)

(13¢)

(L4a)

(14b)

(l4c)

(15a)

(15b)

(15¢)

(16a)

(16b)

(l6c)



ITI. SOLUTION OF THE PHOTON GAS
The conservation equations of the photon gas, and the zeroth order
A\
equation of motion of the material gas are given by Eqs. (13a) and (l4a).

The energy tensor is given by

(o) (o)
1 () zl{lm )\(0)}\(0) +5 X }

v n g(0) peoov v €(C’)J
< (0) ~(0)
< 4N (o), (o) N
=25y 0+ ) (17)

g g

(o)

The energy tensor T“v given above is an exact expression for the
photon gas, and is a zeroth order approximation for the material particle.
It is therefore expected that the behavio; of the gas composed of the
material particles is similar to that of the photon gas within this
approximation.

The equations governing the motion of the photons are non-linear,
and despite the fact that Eq. (13a) admits the "First Integral“(l)
representing the adiabatic law, the general solution is difficult to
obtain.

The approach adopted in this paper is to seek a solution of the
flow fiéld in terms of electromagnetic fields which are properly
superposed so that the flow variables constructed from such electro-
magnetic fields satisfy the physical boundary condition imposed on the
flow field. The plausibility of the present approach is suggested by
the facts that the energy momentum tensors of the photon like gas and
the electromagnetic field are both traceless, and that they satisfy the

same conservation equation.

According to the above, one writes



Tu\) (photon gas) = Z Aﬂ(Hu\%)n (18)
n

where An is an arbitrary constant, (pr) is an energy momentum tensor
of an electromagnetic field. The constants A.n and the elementary tensor

\ .
(pr/ are to be properly selected. The elementary tensor (pr> is given
n

%
in terms of field tensors pr and F y as follow

. "= 1 )
= - = 19
(Hm)n ¢ (ﬂﬂﬁn A.ﬂw%ﬁ%ﬁ,l (152)
or
_1 -2< %* *>
(HH“))n 2 ° FHTF\)T + FH'TF\)T n (19b)
*
F is the tensor dual to F
Y AY)
% i
pr =3 epNOBFOﬁ (20)

1 if the set of number pvog is the set (1,2,3,4)
in order or in an even permutation of that order

epyaB I | if pvop is an odd permutation of (1,2,3,4)
0 otherwise

%
The field tensor FH” and its dual va satisfy Maxwell equation,

Bvo = 0 BGFH\) + BHFW + 8\)FCH =0 (21a)
%* % * *
8VFW =0 BGFH\) + avao + a\)FOH = (21b)

Substituting (17) and (19a) into Eq. (18), we have

n

(0) 2 @)Y, (@), () , (), () _% - 1 \
3(1\ /g >>‘p IR - éu\' ZczA<FmF\)G 46HVFO¢BF05)n
n

22)

. o o
The above tensor equations contain 5 unknowns i.e. N( )/g( ), and



L (©
o

, which are presumably to be solved in terms of the components of

the energy momentum tensor.

By multiplying both sides of Eq. (22) by kéo), and noticing that
, (0, (©)

v AT -1, the following equation is obtained

L (0),0) _ _ x(0), (), 0 _\ -2 1 , )
« - N /e N Zc An(FHGFVG GH\)FOﬁFaB> (23)

n

we rewrite the above equation in the following eigenvalue problem

{ (0)6 +.ZJ n( o Foo ~ l Y OB Oﬁ> }X(O) 243

The energy density cf the photon gas is thereby given by the eigenvalue

of the energy momentum tensor ZJ<HHV> of the electromagnetic field,
n
n

whereas the four velocity vectors are the corresponding eigenvector.

For n = 1, the following four eigenvalues are obtained

61’2 N 63((’)2 = * 71’!- L(F \Y p\)) ( \)Fp\) l% (253)
=2 c‘ﬂ(f-}?)g + 4/§-_11)f2]% (25b)
(o)

Since ¢ is greater than or equal to zero, the negative value should

be discarded.

The pressure of the photon gas is thus given by

- enf(a ) ()

0f the four algebraic equations contained in (24), only three of them

are independent by virtue of the relation x(o)xs?) = -1.

By taking the first three algebraic equationms, X;o) for 4, =1,2,3

are obtained as follows



(o) _ (0))-1 (o)
A, = (ka, * 0pc ) LI @7

(0)>-l . . . (o)
where (sz + 6k£E is the inverse of the matrix sz + szez .

Note that the results (25a,b), (26) and (27) are only applicable for
n =1, When n > 2, the solutions need be properly modified. After the
energy density, pressure and the four velocity Vectorstare found, and
the constants Aés propefly chosen, the numerical density‘ﬁ(o) is
calculated from the continuity equation (l4a), which becomes effectively
a linear partial differential equation by virtue that Xéo) is a known
vector, The reciprocal temperature mf is subsequently obtained from
the equation of state.

The present analysis can be extended to treat the case where the

flow field is subject to the four force fi' Let the body force acting

on the fluid be fi’ the conservation equation reads

31 - ¢ (28)
BV "

Let fH be expressed by
£ = z B (f“) 29)
n

where Bn'is an arbitrary constant.

Assuming further that (fp> is expressed by
n

-, g 3
(fH) =- CE{F J (30)
. wol,
where {3 is the electric four current, i.e, (Jé, ioe>. In analogy to the

case previously considered we write the energy momentum tensor of the

gas as

THV {photon gas) =2_' Dn (HH\))n (31)

n



where (HHN> satisfies the comnservation equation
n

é\)(nv‘)n T C-Z{Fpojc-‘n (32)

The tensor <HPN) is traceless and symmetric.
n

The electromagnetic field with charge and current is obtained by

solving the system of linear equations, i.e.

ols
ri

oy 3 Py =0 (33)

The flow variables associated with the photon like gas can therefore be
expressed by superposition of the electromagnetic fields.
For the gas mixture of photon and the material particles at high

temperature, the zeroth order energy tensor is given by

(o) _ (0) = (0) )z (0 , (0), (o) (©) () /(@)
TW = A{(N +N )/3 »\H A + 6H\)<N +N )/\ (34)

J V
The results obtained previously for the energy density (25a),
pressure (26), and the mean 4-velocity (27) are also applicable for the

present case.

10



IV. EFFECT OF FINITE MASS

Since trace of the first order energy tnesor (Eq. 12c¢) is null, and
the divergence of the energy tensor is zero, the solution of the first
order approximation is also photon gas like. Hence without loss of
generality the first order solution may be taken to be zero.

The effect of the finite mass appears in the secqnd order approxi-
mation, Consequently the flow field of the high energy gas deviates
from that of the photon gas in the second and the higher ordgr theory,

which will not be treated in the present analysis.

11



V. APPLICATION OF THE EQUIVALENCE PRINCIPLE
In this section, the flow pattern of a gas at high effective temper-
ature will be examined under the equivalence principle.
For simplicity, the case of one-dimensional flow will be assumed.
Let ]I consist of three individual fields S , R and V . Each
v DY O v
energy momentum tensor will be assumed to be associated with plane

electromagnetic waves given by

Syt BT EED, B =0 B, =0
H =0, B = f(x,t), H =0

R}N: E;, =0, E; = g(x,t), Es =0
H‘l = g(X,t), Hz = O, H3 =0

Vot B0 Ex = 0, E, = a(t)
Hl = 0, Hy = 0, H3 = b(t)

It can be shown that the components of each energy momentum tensor are

given by

]
&
V)

|
5
W

I}
&

I
K2
&)

]
&
»
&
'S

]

o

Si11

Sia = C2f, S =-c°f, G, = ic f°

Ri; = Ra = Res Rsg = Rz = Rg = Rzg =0
-2 2 -2 2

1
Vip =5 e @HE), Vo =5 @)
Vozg = Vay =Vip = Vg =Voq =0
-1 -3 .3 .2 _ 1 -2 ,2.2
Vas""ic a+b): V44—--—2—C (a+b)

By equality T N HIJ«V’ and solving for the 2 components }; and )4
)

of the 4-velocity in terms of £, g, a and b, yields

12



lr-

2/ - 2 +5°
e = ( )
2 af /a2 +b°

i 2f% + (@P+°)
2 2f[a®41°

N_1 2 2,2
z 2 c® (@ +5)
From the continuity equation, one obtains the following equation

governing N

2 2 2 2
2F% - (a+b)81h _ 9 {M?.f + a +b}

%% +c =
2 £ a® +1°

2§7 + (@ +5°) ox | ot

2¢£ [ 417 32 - @ +b2)]

- ve =i =z
2fF + a° + b BX(_ 2fa+b2

where { = gnN,
The above equation is a linear partial differential equation of
the first order and can be solved in principle, by the standard mathe-

matical technique,
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VI. CONCLUDING REMARKS
Since the four divergence of the electric four current Ja appears

in the body force expression (30) vanishes, the type of body force

occurring is subjected to the following scalar equation
8”{(1?‘-1) (fJ L=-ddag =0
~ !JQ n n o a

-1 : .
where FPLG is the tensor element of the inverse of matrix F. Despite
the above limitation, the case of flow without body force is subjected

to no constraining condition, and appears to have general applicability

in treating relativistic flow with various boundary and initial conditions,

14
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